Posts Tagged "LANDSCAPE"

Food Forests

News, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Food Forests

In response to the unsustainable practices and negative externalities of the modern industrial monocrop agriculture complex, there has been growing interest in permaculture and food forests as a sustainable way to produce food. Permaculture is a philosophy and set of practices that aims to create regenerative ecosystems that are self-sufficient and promote biodiversity. Food forests, also known as forest gardens, are an example of a permaculture design that mimics the structure and function of a natural forest ecosystem.

So, what exactly is a food forest? Essentially, it is a type of agroforestry system that combines fruit and nut trees, shrubs, herbs, and perennial vegetables to create a diverse, low-maintenance food production system. The idea is to mimic the layers of a natural forest, with a canopy layer of tall trees, an understory layer of shorter trees and shrubs, a herbaceous layer of groundcovers and herbaceous plants, and a root layer of bulbs, tubers, and other perennial vegetables.

The goal of a food forest is not just to produce food, but to create a self-sustaining ecosystem that benefits both humans and the environment. By using permaculture principles like companion planting, nutrient cycling, and species symbiosis, a food forest can increase productivity and resilience while reducing the need for external inputs like pesticides and fertilizers.

One key aspect of food forests is the use of species symbiosis, or the interdependent relationships between different species in an ecosystem. In a food forest, each plant plays a specific role in the ecosystem, whether it is fixing nitrogen, providing shade, attracting pollinators, or repelling pests. By selecting plants that complement each other and create mutually beneficial relationships, a food forest can become a thriving, diverse ecosystem that supports a wide range of species.

Another key principle of permaculture and food forests is the idea of “stacking functions.” In other words, each element in the ecosystem should serve multiple functions to maximize productivity and efficiency. For example, a fruit tree can provide shade for an understory crop like berries, while also producing food and providing habitat for birds and insects. These species may act as predators to crop destroying pests.

Here are a few examples different species relationships that can be used in a permaculture food forest:

  • Nitrogen-Fixing Plants and Fruit Trees: Nitrogen-fixing plants like legumes capture nitrogen from the air and convert it into a form that other plants can use. By planting nitrogen-fixing plants in and around fruit trees, the trees can benefit from this natural source of fertilizer. In return, the trees can provide shade and support for the legumes, creating a mutually beneficial relationship.


  • Pollinator Plants and Fruit Trees: Most fruit trees require pollinators to produce fruit. By planting a diverse mix of pollinator-friendly plants like clover, borage, and comfrey around fruit trees, the food forest can attract bees and other beneficial insects that will help pollinate the trees. At the same time, these plants can provide habitat and food for a wide range of other beneficial insects and birds.


  • Pest-Repelling Plants and Companion Plants: Some plants have natural pest-repelling properties that can help protect other plants in the food forest. For example, marigolds are known to repel pests like nematodes, while garlic and onions can help repel pests like aphids and spider mites. By planting these plants in and around other plants that are susceptible to pests, the food forest can reduce the need for synthetic pesticides.


  • Groundcover Plants and Trees: Groundcover Plants: Strawberries, clover, and mint can help prevent soil erosion and retain moisture in the soil. By planting these plants around fruit trees and other tall plants, the food forest can create a natural mulch layer that will help retain water and nutrients in the soil. At the same time, the groundcover plants can provide food and habitat for a range of beneficial insects.

Food forests are also designed to be low-maintenance and require minimal inputs once established. By using perennial plants that come back year after year, a food forest can reduce the need for tillage and other soil-disturbing practices that can damage the ecosystem. And by mimicking the structure of a natural forest, a food forest can take advantage of natural processes like nutrient cycling and water retention.

Food forests are a promising example of how permaculture principles can be applied to agriculture to create sustainable, diverse ecosystems that benefit both humans and the environment. By using species symbiosis, stacking functions, and other permaculture techniques, food forests can increase productivity and resilience while reducing the need for external inputs and minimizing negative impacts on the environment. As we continue to face growing challenges in food production, food forests offer a promising alternative that can help us build a more sustainable future.

If you are interested in developing a food forest on your property, call Tannenbaum Design Group today and let’s start planning your garden and dinner table today!


Jacke, D., & Toensmeier, E. (2008). Edible forest gardens. Chelsea Green.



Tannenbaum Design Group | Landscape Architecture and Outdoor Design | Food Forests


Date: Feb 15, 2023
AUTHOR: tbaumdesign

Iberia Study – Xeriscaping and Permaculture

News, , , , , , , , , , , , , , , , , , , , , , , , , ,


The term “xeriscaping” defines the process of designing landscapes for water-efficiency. The term was first coined in Colorado in 1981, but has existed throughout cultures for many centuries. Xeriscaping is achieved through the practice of designing with 5 basic principles:

  • Minimization of high water demanding ground covers, i.e. lawn areas (using turf only when it provides function)
  • Efficient irrigation techniques
  • Protection and improvement of planting soils
  • Suitable plant species selection for the specific environment (natives and naturalized species)
  • Continual maintenance to reduce water requirements over time

Although the term was first used here, the concept has been implemented throughout the world. Historically Iberians, (i.e. modern day Spain and Portugal) before modern irrigation techniques were very innovative in this field, cultivating fame for their agricultural innovations in dry climates. (As a nifty side fact, this agricultural skill set is the reason the small nation of Bermuda has such vibrant Portuguese subculture today, as they immigrated thousands of Portuguese farmers during the American revolution because they feared an American embargo and needed help becoming agricultural self sufficient.)

Upon arriving in these countries it is clear that there is an embracement of the demands of the environment. There is an acceptance of the existing climate and an adaptation to the natural environment is made rather than fighting the elements at high expense. From this acceptance arises a unique aesthetic that we here can learn from as we move towards sustainable design as a country. A way of rethinking not just our landscape choices but our use of art, hardscape and architecture to match the existing environment rather than battling the natural setting.


Permaculture, as it applies to the landscape, is an attempt to mimic symbiotic relationships found in nature in the practice of agriculture, in order to create self-sufficiency and sustainability. America remains one of the highest consumers of energy, largest producers of waste, and most excessive consumers of artificial fertilizers.

In Iberia, as the colonial empires fell apart, the Spanish, and more extremely the Portuguese, became very poor. Much like many countries that have gone through financial hardships, land became abandoned throughout the major cities, currencies fell apart, and families began to need a means to lower expenses. Through this combination of events, these cultures reverted to the historic practice of self sufficiency in micro farms. All throughout these cities today you will find brilliant little farms using found materials to grow crops in abandoned lots. Because these are personal farms, unlike American mega farms, they lack major irrigation, industrial fertilizers, and monoculture production. Instead, they mix crops and use the symbiotic relationships of the plants to sustain each other, have crop productions all season long, and keep water requirements lower.

In the United States, this has already become a major planning innovation in Detroit as it begins to recover from economic hardship. Entire city blocks have begun to transform into functioning urban farms. Even in areas that may not have the economic hardships, we can still see the value in the environmental sustainability these practices hold.

By reducing the need to transport crops over great distances we can reduce the environmental destruction of the energy usage, but it is more than that. When designed with aesthetic intention, we can turn what would be a landscape that just consumes time, money and water into beautiful, consumable resources that actually save you the owner money at the grocery store.

Date: Aug 25, 2017
AUTHOR: tbaumdesign
Comments: 1

Central Europe Study – Sustainable Communities, Recycling, & Reclamation

News, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Post World Wars Central Europe might not have a lot a lot of positives you can say were taken away from the devastation of war. However, when everything is bombed to rubble you certainly have a clean slate to start over from when it comes to design. Many cities like Frankfurt, Bonn, and Berlin that suffered the highest amount of city destruction took the opportunity to rise from the literal ashes with a new era of urban design and architecture.

In Frankfurt, for instance, over 50% of the infrastructure was destroyed by 1945. Today, 52 percent of the city area is green space, consisting of parks, woodland, farmland, orchard meadows, grassland, allotments and hobby gardens, cemeteries, roadside grass verges and bodies of water. And as of 2019, Frankfurt has been ranked the most sustainable in the world.

Sustainable communities can arise naturally over time as well, through the reclamation and re-purposing of infrastructure. When a large industrial site or landfill, that used to be on the outskirts of town, finds itself decommissioned and eventually absorbed into the growing city, it can present a multitude of challenges (i.e. contaminated soils, eye sores, wasted space, etc). Europe’s ancient cities can serve as great examples of how to cope and even benefit from these challenges.

For industrial sites, Landschaftspark in Duisburg, Germany is a patent example of how a derelict site can be reclaimed without disturbing the polluted soils through deconstruction and wasting materials and energy in mass deconstruction. Through this they achieve the addition benefit of preserving a bit of history. Landschaftspark was transformed from a disused old industrial ironworks into facilities with multiple uses into a one of a kind park space. The huge buildings of the former ironworks have been modified to provide patrons with a multitude of new functions such as alpine climbing gardens created in ore storage bunkers and a viewing tower made from a decommissioned blast furnace.  Landschaftspark represents how an area can celebrate its industrial past by integrating vegetation and industry, promoting sustainable development and maintaining the spirit of the site without morning it as an eyesore.

Metabolon in Bickenbach, Germany serves as an interesting example of landfill reuse. Metabolon is a multi-purpose site built upon a decommissioned landfill. The site today takes advantage of the artificial topography to serve as serves as a lookout point, bike track, public park, playground, and research center and more. Converting waste to energy is the most significant goal in the research center. What was a disaster for the town has become an attraction and public benefit.

The benefits of recycling and reclaiming are shared among citizens, tourists, developers, customers, and the environment alike. Firstly, an industrial reclamation project produces ecological benefits to the environment and its inhabitants through the growth of plant materials that harbor ecology that break down pollutants in the soils and filter water runoff. Secondly, by transforming dilapidated space into functional and aesthetic pieces, a city brings economic revitalization to the surrounding area. And thirdly, when site is transformed into a useful and attractive space the area becomes more attractive to potential businesses and tourists.

This mindset of design applies to projects large and small. When we think about renovating our residential spaces we have two options. Tear everything out and start anew, or integrate and recycle. Many people in the industry will take the easy road- remove it all and put in new. I urge more of you to consider the value in preserving and recycling the old. Keep more structures out of the landfill. Integrate those priceless 30 year old shrubs into the plans if you can with a nice pruning. Reuse materials where you can. New is not always better, it’s just cleaner for a few years.

Date: Mar 28, 2016
AUTHOR: tbaumdesign
Comments: 1